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Received: 2 February 1998 / Accepted: 17 March 1998

Abstract. We consider a generalized Hubbard model with on-site and nearest-neighbour repulsions U and
V respectively, and nearest-neighbour hopping for spin up (down) which depends on the total occupation
nb of spin down (up) electrons on both sites involved. The hopping parameters are tAA, tAB and tBB
for nb = 0, 1, 2 respectively. We briefly summarize results which support that the model exhibits s-wave
superconductivity for certain parameters and extend them by studying the Berry phases. Using a general-
ized Hartree-Fock(HF) BCS decoupling of the two and three-body terms, we obtain that at half filling, for
tAB < tAA = tBB and sufficiently small U and V the model leads to triplet p-wave superconductivity for
a simple cubic lattice in any dimension. In one dimension, the resulting phase diagram is compared with
that obtained numerically using two quantized Berry phases (topological numbers) as order parameters.
While this novel method supports the previous results, there are quantitative differences.

PACS. 74.20.Mn Nonconventional mechanics (spin fluctuations, polarons and bipolarons, resonating
valence bound model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 71.10.-w Theories
and models of many electron systems – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

Since the discovery of high Tc much effort has been de-
voted to the study of the pairing mechanisms in highly
correlated electronic systems. Two very well studied mi-
croscopic models for such systems are the Hubbard and
t − J models. While the search for superconductivity in
the positive-U Hubbard model by numerical methods has
failed so far [1–5], t−J-like models exhibit d -wave super-
conductivity for certain parameters [6–10].

Although most of the high Tc superconducting materi-
als have a two-dimensional character, calculations in one
dimension (1D) have been very useful. In one dimension
the Hubbard and supersymmetric (J = 2t) t − J models
can be exactly solved using the Bethe ansatz [11,12]. It
has been shown that for this particular case of the t − J
model, the ground state consists of bound states with a
gapless excitation spectrum, but for J < 2t bound states
exist for large enough densities [13].

Other strongly correlated models that introduce cor-
related hopping interactions are subject of current re-
search [14-51]. In 1989, Hirsch [14] proposed a model
for the description of oxide superconductors by consid-
ering the holes in a nearly filled band as charge carriers.
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The Hamiltonian in standard notation reads:

HH = −
L∑
j=1

∑
σ=±1

(c†j,σcj+1,σ + c†j+1,σcj,σ)

×

(
1−

∆t

2
(nj,−σ + nj+1,−σ)

)
. (1)

In contrast to the Hubbard model, the hopping am-
plitude for single-particle hopping to a nearest-neighbour
site depends on the occupancy of one of the sites involved
in the process.

A few years ago, a new integrable model of strongly
correlated fermionic systems for hole superconductivity
has been introduced [15,16]. It is a modified version of
Hirsch’s model (1) and its Hamiltonian reads:

HB = −
L∑
j=1

∑
σ=±1

(c†j,σcj+1,σ + c†j+1,σcj,σ)

×
(
1−∆tnj+(1+σ)/2,−σ

)
. (2)

In 1D, it has been solved using the Bethe ansatz in
three parameter regimes: 0 < ∆t < 1, ∆t < 0 [15–17] and
∆t > 1 [18]. The two first regimes are related by a particle-
hole transformation and present similar behaviour to the
Hirsch model (1): there is a good quantitative agreement
between the ground state energies, both models show gap-
less charge excitations and spin excitations with a finite
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gap for all densities and also dominating superconduct-
ing correlations for densities larger than a critical value
[19]. Instead, for the case with ∆t > 1, both models (1
and 2) behave quite differently: while the spin gap in the
Hirsch model vanishes and there are no indications of su-
perconductivity, the gap remains finite and superconduct-
ing correlations are present for small doping in the Bariev
model (2).

An important interaction that has not been considered
in the above models is the Coulomb repulsion. We consider
a more complete Hamiltonian that includes on-site U and
nearest-neighbour V interactions between the particles,
and contains a more general kinetic term with different
hopping parameters, depending on the total occupation
of the sites involved:

H = −
∑
<ij>σ

Φij(c
†
i,−σcj,−σ + hc) + U

∑
i

ni↑ni↓

+V
∑
<ij>

ninj ;

Φij = tAA(1− niσ)(1− njσ) + tBBniσnjσ

+tAB(niσ + njσ − 2niσnjσ). (3)

The model (1) corresponds to taking tAA + tBB −
2tAB = 0, U = V = 0 and ∆t/2 = 1 − tAB/tAA, and
the Hubbard model is obtained when V = 0, tAA =
tBB = tAB. The case V = 0 has been derived as the model
that describes the low energy excitations of intermediate-
valence systems [20] and “hole” and cuprate superconduc-
tors [21,22]. The model with V was obtained for cuprate
superconductors [23,24] and proposed to describe the ben-
zene molecule [25,26].

For tAB = V = 0 and |tAA| = |tBB| an exact solu-
tion of (3) exists in 1D [27–30], but this case is too pe-
culiar, as discussed later. Hamiltonian (3) supplemented

by a hopping of pairs of the type tp
∑
〈ij〉 c

†
i,↑c
†
i,↓cj,↑cj,↓

has also been solved in 1D using Bethe ansatz [31–33] for
U = −2tp and tAAtBB = t2AB. Its behaviour is similar to
that of the Hubbard model. For negative U the model dis-
plays superconductivity. A more general model including
this one and that of Bariev for particular parameters has
also been solved using Bethe ansatz [34].

For tAB = 0, |tAA| = |tBB| = t, U, V 6= 0 the phase
diagram of the model (3) has been investigated previously
[26,35–37] and some exact results have been found for the
half-filled system (density of particles n = 1): a) in any
arbitrary lattice in D dimensions with coordination num-
ber z = 2D the ground state is a Mott insulator (MI) with
all sites singly occupied if U > z max(V, |tAA| + |tBB |);
b) the ground state is a charge density wave (CDW) if
V >max(U/z, U/2 + |tAA| + |tBB |)/2 (simple cubic lat-
tices) ; c) there is a region with mobile carriers which
we call metallic (M) between these two phases, the M-
MI boundary being at UM−MI = z(|tAA| + |tBB|) (for
D = 1 this state is a “non-conducting metal” [30,36]);
d) for D = 1 the M-CDW boundary is at VM−CDW =
(U/2 + |tAA|+ |tBB |)/2.

For 0 < tAB < tAA = tBB = t, U, V 6= 0 the phase
diagram at n = 1 has been studied numerically in 1D and

2D and within mean-field approximation [37–39]. The high
spin degeneracy of the MI phase for tAB = 0 is lifted and
gives place to a spin density wave (SDW) phase. There
exists a metallic phase (the detailed nature of which will be
discussed later) for small values of U and V , which shrinks
as tAB → t. When tAB = t (Hubbard limit), several results
indicate that there is no M phase, except, eventually, on
the second-order transition line between the CDW and
SDW phases, that ends at a tricritical point. The position
of this point is, to date, not well determined and should
be around U ∼ 2V ∼ 4t [52–56].

The aim of the present work is to study, by numerical
and analytical methods, possible existence of supercon-
ductivity in the model (3) in regions of parameters for
which exact results are not available. Special attention
is paid to the occurrence of exotic p-wave triplet super-
conductivity (TS). In particular, we show strong evidence
that the extension to finite tAB of the above mentioned
M phase displays TS. Some evidence of triplet supercon-
ductivity exists in the extended Hubbard model (Eq. (3)
with tAA = tAB = tBB) very near the line U = −2V for
positive U [56,57].

In Section 2 we briefly review the results which in-
dicate that the model (3) exhibits s-wave superconduc-
tivity (or dominant singlet superconducting correlations
at large distances in 1D) for certain parameters. At half
filling we present evidence of a superconductor-insulator
transition. In Section 3 we explain the HF-BCS decou-
pling scheme and apply it to the electron-hole symmetric
case tAB < tAA = tBB at half filling. We obtain a phase
diagram separating regions in which the stable phase is a
CDW, SDW or triplet p-wave superconductor (TS). The
latter is the stable one for sufficiently small U and V in
a simple cubic lattice in any dimension. In Section 4 we
calculate the phase diagram in 1D by a numerical method
recently introduced by two of us [40], which uses topolog-
ical quantum numbers as order parameters, and compare
with the HF-BCS results. Section 5 contains the conclu-
sions.

2 s-wave superconductivity

The model (3) becomes simpler when the three-body part

of it vanishes. The coefficient of terms of the form c†i,σcj,σ
ni,−σnj,−σ is t3 = 2tAB − tAA − tBB.

We concentrate first in the results for t3 = 0. Using
a HF-BCS decoupling, it has been shown that the model
leads to (extended) s-wave superconductivity for V = 0,
small enough U and positive (negative) t2 = tAA−tAB for
a more (less) than half-filled band [41]. In 1D Japaridze
and Müller-Hartmann have calculated the correlation ex-
ponent Kρ using continuum limit theory and bosonization
[43]. They obtained that Kρ > 1 (superconducting corre-
lations dominate at large distances) if

U < Uc = 8(tAB − tAA) cos(πn/2)− 6V (4)

where n is the number of particles per site.
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The particular case t2 = tAA corresponds to the re-
lation tAA = −tBB, tAB = 0, and has been exactly
solved for V = 0 [27–30]. Superconducting η-paired states
with off-diagonal long-range order (ODLRO) are part of
the highly degenerate ground state. However, as a con-
sequence of this degeneracy, the system does not display
anomalous flux quantization (AFQ) for large rings [30]. In
other words, the Meissner effect is absent.

Since, due to the rather pathological degeneracy of the
ground state, the exact results do not allow to draw defi-
nite conclusions for tAB 6= 0 while the bosonization results
are expected to be valid only for weak interactions, we
have carried out a detailed numerical study of the model
for V = 0 in rings of 10 and 12 sites [42]. For tAA = 1,
tAB = 2, tBB = 3, 2/3 < n < 4/5 and small U , there
are clear indications of binding and AFQ (a tendency to-
wards a periodicity of half a flux quantum in the energy
as a function of flux). The calculation of the correlation
exponent Kρ indicates that superconducting correlations
dominate for U < Uc, where Uc ∼ 9, 8 or 6.5 for n = 0.4,
0.5 or 0.6 electrons per site respectively. These values are
nearly 1.4 times larger than the corresponding continuum
limit results: 6.46, 5.66 and 4.70 respectively, according to
equation (4). For n = 0.8, tAA = 1, tAB = 1.5 and tBB = 2
we obtain Uc = 1.6, while equation (4) gives Uc = 1.24.

The qualitative agreement between equation (4) and
our numerical results is lost at half filling. While the con-
tinuum limit theory predicts that the system is an insu-
lator for all positive values of U [43], we find evidence
of a superconductor-insulator transition as a function of
U when t3 = 2tAB − tAA − tBB = 0 and any sign of
t2 = tAA − tAB (the sign can be changed using the sym-
metry properties of the model [30,42]). This agrees with
previous numerical work of Kρ [42,44], a BCS calcula-
tion [44] and recent results using slave bosons [45]. For
small positive values of U we find in rings of 10 sites
that the energy as a function of flux E(φ) has a form
that suggests AFQ for tAA = 1, tAB = 0.5 and tBB = 0.
Furthermore, using topological quantum numbers [40] (as
explained briefly in Sect. 4), we detect a transition from
charge (γc) and spin (γs) Berry phases (γc, γs) = (0, 0) to
(π, π) (corresponding to the SDW phase) as U increases.
We point out that the topological values (0, 0) are also ob-
tained for the negative-U Hubbard model which displays
singlet s-wave superconductivity. The value of Uc separat-
ing both phases is small. For 10 sites we obtain Uc = 0.075.
From the size-dependence we estimate that this actually
corresponds to a lower bound. From the results of Kρ of
reference [42] and using symmetry arguments we estimate
(remember n = 1) Uc = 0.5 for tAA = 1, tAB = 3/5 and
tBB = 1/5 and Uc = 0.3 for tAA = 1, tAB = 2/3 and
tBB = 1/3, but careful finite-size scaling is necessary to
give accurate values of Uc.

While the values of Kρ alone cannot distinguish be-
tween singlet s-wave (even) and triplet p-wave (odd)
superconducting states, the BCS results and the Berry
phases (0,0) are indicative of the former. A demonstra-
tion of the s-wave character was provided by the results
of stochastic diagonalization by Michielsen and De Raedt

[46] which showed the presence of singlet-singlet quasi
ODLRO in 1D for tAA = 1, tAB = 1.4 and tBB = 1.8,
n = 1.5 and U < 1, and also for tAA = tAB = tBB = 1,
U = −4 and n = 1.5 (negative-U Hubbard model).

We discuss now the effect of the three-body term
t3 = 2tAB − tAA − tBB. When tAA = tBB the model
is electron-hole symmetric for bipartite lattices [42]. For
the electron-hole symmetric case with t3 > 0, the mean-
field HF-BCS decoupling of the two- and three-body terms
leads to singlet s-wave (and also d-wave in 2D) supercon-
ducting solutions [47]. However, a positive t3 also favours
CDW and SDW instabilities [38]. In 2D, the detailed
(mean-field) calculation of the phase diagram for V = 0
shows that the SDW is stable for positive U near half fill-
ing, while extended s-wave superconductivity is present
in the ground state for small U or large doping. The d-
wave paramagnetic solution has always larger energy than
the other two [47]. The electron-hole symmetric case with
t3 < 0 is analyzed in the next section.

3 p-wave superconductivity

In this section we discuss the phase diagram of the model
for the electron-hole symmetric case tAB < tAA = tBB
and half filling, in simple cubic lattices in arbitrary di-
mensions using HF-BCS. This decoupling leads naturally
to p-wave superconductivity for small U and V . Although
a real proof of the existence of this phase is lacking, fur-
ther arguments given in the next Section support its exis-
tence in 1D. For tAB = 0, exact results have shown that
for small U and V , the CDW and SDW phases become
unstable because the system lowers its energy taking ad-
vantage of the kinetic energy terms tAA and tBB, which
are inactive in the CDW and SDW phases [26,35,36]. As
mentioned in the Introduction, a phase diagram valid for
several lattices in arbitrary dimensions was constructed
[36]. For tAB = V = 0 , an exact solution exists in 1D
[27–30], but these exact results were unable to identify
the nature of the third phase for finite tAB. The numer-
ical and mean-field results [37,38] show the presence of
mobile carriers and a non-vanishing Drude weight within
the M phase in 1D and 2D, suggesting that the system is a
Luttinger liquid in 1D and metallic in 2D for small U and
V . However, a suggestion that this phase has dominant
triplet superconducting correlations at large distances was
given only recently [40].

Note that if in the three-body part of the corre-

lated hopping (see Eq. (3)), the operator c†i,σcj,σ is re-

placed by its expectation value τ (assumed for this
argument independent of spin and nearest-neighbour pair,
as in the non-interacting case), this term takes the form
t3τ
∑
〈ij〉 ni,−σnj,−σ, with t3 = 2tAB − tAA − tBB < 0.

Thus, the three-body term reduces to an attraction of
nearest-neighbour electrons with the same spin and triplet
pairing is a natural consequence of it.

The HF-BCS decoupling is the most convenient mean-
field approximation to reduce the many-body terms of
the Hamiltonian to one-body terms. It is a generalization
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of the procedure used by Foglio and Falicov for the nor-
mal case [20]. A more direct way of obtaining the HF-BCS
Hamiltonian (HHFBCS) is to define the vacuum as the
(unknown for the moment) Slater determinant that is the
ground state of HHFBCS . Then one should normal order
the exact Hamiltonian with respect to this vacuum us-
ing Wick’s theorem [58,59]. Clearly the contractions that
appear using this theorem are the HF-BCS expectation
values. The exact Hamiltonian takes the form of the HF-
BCS ground-state energy plus normal ordered one- and
many-body terms. Neglecting the latter, one obtains the
HF-BCS Hamiltonian.

Neglecting also for simplicity spin-flip expectation
values of the form 〈c†i,σcj,−σ〉 (related to spiral spin struc-

tures), we obtain HHFBCS using the following approxi-
mations for the two- and three-body terms of H:

ni↑ni↓ ' 〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉

+(c†i↑c
†
i↓〈ci↓ci↑〉+ h.c.)− |〈ci↓ci↑〉|

2, (5)

(ni↑ + ni↓)(nj↑ + nj↓) ' 〈ni↑ + ni↓〉(nj↑ + nj↓)

+ (ni↑ + ni↓)〈nj↑ + nj↓〉 − 〈ni↑ + ni↓〉〈nj↑ + nj↓〉

+
∑
σ

{−(〈c†iσcjσ〉c
†
jσciσ + h.c.) + |〈c†iσcjσ〉|

2

+
∑
σ′

[(〈c†iσc
†
jσ′〉cjσ′ciσ + h.c.)− |〈c†iσc

†
jσ′〉|

2]}, (6)

c†i↑cj↑(ni↓ + nj↓) ' 〈c
†
i↑cj↑〉(ni↓

+ nj↓) + c†i↑cj↑(〈ni↓〉+ 〈nj↓〉)

− 〈c†i↑cj↑〉(〈ni↓〉+ 〈nj↓〉)

+ c†i↑c
†
j↓〈cj↓cj↑〉+ c†i↑c

†
i↓〈ci↓cj↑〉

+ 〈c†i↑c
†
j↓〉cj↓cj↑ + 〈c†i↑c

†
i↓〉ci↓cj↑

− 〈c†i↑c
†
j↓〉〈cj↓cj↑〉 − 〈c

†
i↑c
†
i↓〉〈ci↓cj↑〉, (7)

and the same interchanging spin up and down. Choosing
one spin orientation for the sake of clarity, the three-body
terms are replaced as:

c†i↑cj↑ni↓nj↓ = c†i↑cj↑c
†
i↓ci↓c

†
j↓cj↓

' c†i↑cj↑(〈ni↓〉〈nj↓〉+ |〈c†i↓c
†
j↓〉|

2 − |〈c†i↓cj↓〉|
2)

−c†i↓cj↓(〈c
†
i↑cj↑〉〈c

†
j↓ci↓〉+ 〈c†i↑c

†
j↓〉〈ci↓cj↑〉)

−c†j↓ci↓(〈c
†
i↑cj↑〉〈c

†
i↓cj↓〉+ 〈c†i↑c

†
i↓〉〈cj↓cj↑〉)

+ni↓(〈c
†
i↑cj↑〉〈nj↓〉+ 〈c†i↑c

†
j↓〉〈cj↓cj↑〉)

+nj↓(〈c
†
i↑cj↑〉〈ni↓〉+ 〈c†i↑c

†
i↓〉〈ci↓cj↑〉)

+c†i↑c
†
i↓(〈ci↓cj↑〉〈nj↓〉 − 〈cj↓cj↑〉〈c

†
j↓ci↓〉)

+c†i↑c
†
j↓(〈ni↓〉〈cj↓cj↑〉 − 〈ci↓cj↑〉〈c

†
i↓cj↓〉)

+ci↓cj↑(〈c
†
i↑c
†
i↓〉〈nj↓〉 − 〈c

†
i↑c
†
j↓〉〈c

†
i↓cj↓〉)

+cj↓cj↑(〈c
†
i↑c
†
j↓〉〈ni↓〉 − 〈c

†
i↑c
†
i↓〉〈c

†
j↓ci↓〉)

+(c†i↓c
†
j↓〈cj↓ci↓〉+ cj↓ci↓〈c

†
i↓c
†
j↓〉)〈c

†
i↑cj↑〉

+2[〈c†i↑cj↑〉(|〈c
†
i↓cj↓〉|

2 − 〈ni↓〉〈nj↓〉)

+〈c†i↑c
†
i↓〉(〈cj↓cj↑〉〈c

†
j↓ci↓〉 − 〈ci↓cj↑〉〈nj↓〉)

+〈c†i↑c
†
j↓〉(〈ci↓cj↑〉〈c

†
i↓cj↓〉 − 〈cj↓cj↑〉〈ni↓〉)

−〈c†i↑cj↑〉|〈c
†
i↓c
†
j↓〉|

2]. (8)

Each thermodynamic phase of the model in the HF-
BCS approximation is characterized by a different sym-
metry breaking of the expectation values entering equa-
tions (5-8) with respect to the unperturbed system. Since
singlet s- and d -wave solutions do not exist for tAB < 0
[47], we have looked for triplet p-wave superconductiv-
ity (TS). Based on symmetry properties expected for the
ground state in 1D (explained at the end of the next
section), we assumed that only the Sz = ±1 compo-
nents of the triplet order parameter do not vanish like
in the Anderson-Brinkman-Morel phase of superfluid 3He

[60]. For this case we have 〈c†i↑c
†
j↓〉 = 0 for all i, j in

one lattice direction and a vector δ connecting nearest-

neighbours 〈c†i+δ,σc
†
i,σ〉 = −〈c†i−δ,σc

†
i,σ〉 = ψ 6= 0, while in

other directions 〈c†i+δ,σc
†
i,σ〉 = 0. As a consequence also

〈c†i+δ,σci,σ〉 depends on direction. We also considered the
usual CDW and SDW phases for which the cubic lattice
in D dimensions is divided into two equal interpenetrat-
ing sublattices A and B, in such a way that the nearest-
neighbours of any site of A lie in B. In this case, for
the SDW 〈ni,σ〉 = (1 + mσeiQ.Ri)/2 while for the CDW
〈ni,σ〉 = (1+∆eiQ.Ri)/2 with Q = (π, π, ..., π) and m and
∆ order parameters. The resulting one-particle Hamilto-
nian has the form of the non-interacting one with a renor-
malized effective hopping teff , plus a symmetry breaking
perturbation which, at half filling, depends on two or three
parameters to be determined selfconsistently. These pa-
rameters are the corresponding order parameter (ψ, m or

∆) and the different values of 〈c†i+δ,σci,σ〉: one for CDW,

SDW, or TS in 1D, two for TS in more than 1D (for TS
in more than 1D teff becomes anisotropic).

The phase diagram has a natural energy scale which
we call E: the absolute value of the energy of the half-filled
non-interacting case for hopping |t3| = tAA + tBB − 2tAB,
counting both spins. The ratio E/|t3| depends only on
the dimension of the simple cubic lattice and is 4/π =
1.273 in 1D, 16/π2 = 1.621 in 2D, 2.005 in 3D [61] and
0.798 in ∞D [61]. The only point in the U − V phase
diagram for which the paramagnetic solution is stable is
the triple point (Ut, Vt) = (E,E/z) where z = 2D is the
coordination number. If and only if V < Vt, for any U , the
paramagnetic solution is unstable against the TS phase; if
and only if U > Ut = E, it is unstable against SDW; and
if and only if V > (E + U)/2z it is unstable against the
CDW. These boundaries allow us to establish that, in any
dimension, inside the region bounded by the dashed line
in Figure 1, the TS is the stable phase. Also the CDW-TS
boundary lies between the dashed and dot-dashed lines
of Figure 1. With an adequate change of variables, it can
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Fig. 1. Mean-field (HF BCS) phase diagram of the model (3)
for one particle per site and tAA = tBB > tAB. The full line is
the CDW-SDW boundary in any dimension. Inside the region
bounded by the dashed lines, the triplet superconducting (TS)
phase is the stable one. The CDW-TS boundary lies between
the dashed and dot-dashed lines. E/2(tAA−tAB) is a number of
order one which depends on dimension (see text). Solid circles
(squares) are points on the CDW-TS (SDW-TS) boundary in
1D for tAA = tBB = 1 and tAB = 0.2.

be shown that the self-consistency problems for the CDW
and SDW take the same form on the line U = zV . Thus,
in any dimension, for U ≥ E, U = zV is the boundary
of the CDW-SDW first-order transition, independently of
the other parameters of the model.

The above results are quite general and valid in any
dimension. The region of stability of the TS extends al-
ways beyond the dashed lines of Figure 1 and the precise
location of the boundaries of the TS depends on tAB and
the dimension. In Figure 1, the specific case of 1D and
tAA = tBB = 1, tAB = 0.2 is shown. The change in slope
of the SDW-TS boundary is due to a metamagnetic first-
order transition inside the SDW from large to small order
parameter as V increases. A similar situation occurs in
the CDW-TS boundary. Near the triple point, and par-
ticularly for tAB ∼ 1, all order parameters become very
small, and the numerical method used to solve the self-
consistency equations breaks down. Similarly, in 1D, for
V = 0 and tAB = 0.097, the effective hopping vanishes in
the paramagnetic phase and the HF-BCS approximation
becomes invalid for tAB ∼ 0.1 or smaller.

One expects that the HF-BCS results are reliable for
small values of the interactions (small U , V and 1− tAB,
with tAA = tBB = 1) and D> 1, supporting the existence
of the p-wave TS for these parameters. In 1D there is no
true LRO and the HF-BCS results only have qualitative
validity. A comparison with more accurate methods in 1D
is made in the next section.

4 Phase diagram obtained from topological
transitions

In recent years, the concept of Berry phase was a subject
of great interest in a variety of fields in physics. Zak has
shown that it can be used for labeling energy band in solids
[62], and subsequent work showed that changes of polar-
ization are proportional to the corresponding change in a
Berry phase [63]. Ortiz and Martin have generalized these
concepts to a many-body ground state [64], and Resta and
Sorella used this concept to identify a ferroelectric transi-
tion [65]. This many-body Berry phase is simply the phase
captured by the ground state in a ring of L sites as the
boundary conditions c†i+L,σ = eiφ c†i,σ, complete a cycle

from a flux φ = 0 to φ = 2π [40,64–66]. We call this phase
the charge Berry phase γc.

While previous work assumed always that the ground
state is non-degenerate for all φ (except at isolated points
of the parameter space at which γc is indefinite), two of
us have recently generalized this concept for the case in
which there is a crossing of levels in the ground state as a
function of φ [40]. This is the case of the superconducting
phases, for which there is AFQ as a consequence of the
crossing energy levels. Furthermore, a “spin” Berry phase
γs was defined as that captured by the ground state in
the cycle 0 ≤ φ ≤ 2π varying the boundary conditions as
c†i+L,σ = eiσφc†i,σ with σ = 1 (-1) for spin up (down) [40].

Due to the inversion symmetry of the model (3). the Berry
phases are quantized and in 1D can take only the values
0 and π (modulo 2π). Thus, it turns out that γc/π and
γs/π are topological quantum numbers which are related
to changes in the total polarization and the difference be-
tween polarizations for spin up and down respectively [40].

Defining a vector γ = (γc, γs), it is easy to see [40] that
for a CDW (SDW) with maximum order parameter one
has γ = (0, 0) (γ = (π, π)), and these values are consistent
with the change in up and down polarizations when the
electrons of spin down of one phase are moved to the other
sublattice to form the other phase. Since γ jumps in π
only at the phase transitions, the values γ(CDW)=(0,0)
and γ(SDW)=(π, π) are valid for any non-zero magnitude
of the corresponding order parameters. These values are
also consistent with the canonical transformation.

c′j,↑ = cj,↑, c
′
j,↓ = (−1)jc†j,↓ (9)

under which the CDW and SDW are interchanged and the
Berry phases modulo π transform as:

γ′ = γ + π. (10)

Since the ground state for U = V = 0 is invariant un-
der equation (9), equation (10) implies that for the third
phase present in the diagram γc(TS) = γs(TS) + π (nu-
merically it turns out that γ(TS) = (0, π)), and thus, at
least one of the topological numbers γc/π, γs/π jumps at
each boundary. Thus, this method combined with finite-
size scaling is able to determine accurately the phase
diagram (see Fig. 2).
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Fig. 2. Phase diagram of the model (3) in 1D for one particle
per site, tAA = tBB = 1 and two different values of tAB. Solid
(open) circles are determined from the jump of γc (γs). Solid
squares, dotted and dot-dashed lines are HF BCS results. The
dashed lines are exact results in the limit tAB → 0 [36]. Full
lines are guides to the eye. The small difference between the
results from both Berry phases at the CDW-SDW boundary is
due to finite-size effects.

The best previous numerical methods to determine
phase diagrams of this type were based on the size de-
pendence of SDW and CDW order parameters, and their
probability densities in a Monte-Carlo sampling [38,52,
54]. However, these quantities as well as different corre-
lation functions vary smoothly at the transition and it is
very difficult to obtain accurate boundaries [52–55]. In-
stead, the use of topological numbers as order parameters
necessarily leads to sharp transitions.

In Figure 2 we show the phase diagram of the model
(3) in 1D obtained with the above mentioned method, for
two values of tAB, and compare it with the corresponding
HF BCS results and with the exact result for tAB → 0
[36]. Although, as mentioned in the previous section, the
HF BCS results are not expected to have quantitative va-
lidity in 1D for large values of the interaction, for small
tAB the resulting phase diagram is in reasonable agree-
ment with that obtained with the above explained more
reliable numerical method. The results of the latter tend
to the exact phase diagram as tAB → 0 . The comparison
also shows that the TS phase in 1D extends beyond the
expectations of the HF BCS results. This is particularly
clear for tAB ∼ tAA = tBB and U ∼ 2V , and is probably
related to the fact that, in the continuum limit theory,
the backscattering and Umklapp terms coming from the
U and V terms of the Hamiltonian (ultimately responsible
of the insulating behaviour), nearly cancel each other on
the line U = 2V [54,56].

We should note that the method of the topological
transitions alone, is not able to identify the nature of the
TS phase, since different phases can have the same topo-
logical numbers. For example, we find γ = (0, 0) not only
for the CDW, but also in the negative-U Hubbard model
with small negative V , for which s-wave singlet pairing
occurs [56,57]. We also find it for our model (Eq. (3))
with t3 = V = 0 and small U , for which also singlet su-
perconducting correlations dominate at large distances, as
explained in Section 2.

In the following we summarize the evidence in favour
of the triplet superconducting phase in 1D.

a) Superconductivity

– Since each time the Berry phase is evaluated, the
ground state energy as a function of the flux E(φ) is
computed at the same time, we have checked that there
is a tendency to AFQ (i.e. E(φ) ' E(φ + π) ) inside
almost all the TS phase.

– Our previous calculations of the correlation exponent
Kρ for V = 0 show the dominance of superconducting
correlations at large distances ( Kρ > 1) for U < Uc,
and an opening of a charge gap for U > Uc [39,42].
The value of Uc has been estimated as Uc ∼ 3.5 for
tAB = 0.2 and tAA = tBB = 1 [42] in good agreement
with the result shown in Figure 2. For tAB = 0.6, from
Kρ one obtains Uc = 2.05± 0.05 [39], while from the
topological transition we obtain Uc = 2.11 [40].

– For a “metallic” gapless phase with Kρ ≤ 1 (as in the
non-interacting case), one expects undetermined Berry
phases [40,66] instead of the result γ = (0, π) for the
TS phase.

b) Triplet character

– The HF BCS decoupling in any dimension leads to
unstable singlet and stable triplet superconductivity.

– For known cases of singlet superconductivity (men-
tioned above) we obtain γ = (0, 0) in contrast to the
result γ(TS) = (0, π).

– We find that in rings of 10 sites the nearest-neighbour
triplet-triplet correlations are larger than the singlet-
singlet ones at the largest distance in the ring (5 sites).

– Numerically, we obtain a non-degenerate ground state
inside the TS phase which should transform into it-
self under the symmetry transformation (9) for U =
V = 0, since the Hamiltonian is invariant at that
point. An ordinary BCS singlet solution transforms
into a SDW under this transformation, leading neces-
sarily to a degenerate ground state for U = V = 0.
Instead, using c′†k,↓ = c−k+Q,↓, |0〉 =

∏
k c
′†
k,↓ and

cos(kα+Qα) = − cos(kα), it can be easily checked that
our p-wave triplet BCS solution in the x-direction (see
Sect. 3 after Eq. (8)):

|px >=
∏

kσ,kx>0

(uk + vkc
†
k,σc

†
−k,σ)|0〉 (11)

is invariant under equation (9).
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– Finite-size scaling is consistent with the absence of a
spin gap inside the TS phase. Continuum-limit the-
ory predicts that triplet superconducting correlations
dominate at large distances (due to logarithmic cor-
rections) when Kρ > 1 and a spin gap is absent [67].

5 Summary and discussion

We have studied the occurrence of superconductivity in
the generalized Hubbard model (3). This model contains
the most important physical ingredients expected to de-
scribe transition metals in general [26] or cuprate su-
perconductors [21–24]. In 1D, most of the parameters of
the model appropriate for systems like trans-polyacetylene
have been estimated [25,48] and are consistent with sev-
eral regions of parameters for which we find superconduc-
tivity.

When the three-body term t3 = 2tAB − tAA − tBB
vanishes, singlet s-wave superconductivity is expected for
electron densities per site n 6= 1 or very small values of
U . For n not too near one and V = 0, equation (4) de-
scribes qualitatively the values of U below which super-
conducting correlations dominate at large distances in 1D.
However, numerical results suggest that equation (4) un-
derestimates these values by a factor ∼ 1.4. For n = 1,
the region of superconducting behaviour is very small.

Instead, for n = 1 and tAB < tAA = tBB = 1, we find
evidence of a p-wave triplet superconducting phase (TS)
for small values of U and V . The Hartree-Fock BCS ap-
proximation gives a stable TS for sufficiently small U and
V in any dimension. In 1D, the numerical method of the
Berry phases, described in the previous section, predicts a
stable TS even for small 1− tAB and large values of U ∼ 3
near the line U = 2V .

While a definite proof of the triplet character of this
phase does not exist so far, there are several arguments
in favour of it enumerated at the end of the previous sec-
tion. In contrast to the previous case of s-wave super-
conductivity (2tAB = tAA + tBB) mentioned above, for
tAB < tAA = tBB , the effect of doping seems to weaken
the TS in favour of the SDW at V = 0 [42].

Experimentally, evidence of a triplet odd-parity su-
perconducting order parameter exists in some quasi-1D
organic conductors [68]. In 1D, our solution is compat-
ible with a nodeless superconducting gap, as evidenced
by thermal conductivity measurements in (TMTSF)2ClO4

[68].
The effect of phonons, particularly in 1D, can stabilize

insulating CDW states, or favour s-wave superconducting
states. However, based on the general study performed
in 1D using bosonization [67], we believe that our results
remain qualitatively valid in presence of a small or moder-
ate electron-phonon coupling. In addition, if phonons are
treated in the antiadiabatic approximation, the model (3)
retains its form [21b].
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